Remember my plan to make a ball balancing robot? Last year I set myself the goal to make a ball balancing robot. I even build the robot. Since then I wondered off my original goal and made a guardbot, Koios, from this platform. Now I am having another shot at making a balancing robot.

Programming a balancing robot is easy in theory. You just need a sensor that tells you how much the robot is tilted, most often people use a gyro for this. I use my IMU for this, so that I do not suffer from gyro drift. The tilt angle is then feeded to a PID-controller that transformes tilt to motor speed. The hard part is to tune the PID controller, it has to translate tilt into just the right amount of motor speed, too little and the robot falls of the ball, too much and the robot goes over the top and falls of on the other side of the ball. Falling of the ball damages the robot. So I had a problem, how to tune the PID controller without damaging the robot?

To be able to tune the PID-controller without damaging the robot I made a special platform. It is a large disk with a small pole in the middle pointing down Due to the pole the disk will always be tilted when lying on the ground, only when it balances perfectly on the pole it is level. Therefore this disk can be used to tune the controller.  The robot can ride off the disk, but it doesn’t fall then, it just comes on the floor with one or two wheels.  Afbeelding

When I tested this setup I discovered that the disk whas too smooth, the wheels didn’t have enough grip and slipped. To increase the friction I coated the surface of the disk with sillicon rubber, It is the light blue surface you see in the picture. Now I have a very “slick” surface.I only hope it lasts under the forces the NXT motors generate.But for the moment this problem is solved.

But there are other problems. One is the fact that these holonomic wheels make the robot vibrate, this affects the IMU filter, there is still some drift although it stays within certain limits. I do have prototype rotacaster wheels. The manufacturer told me that the production wheels are more round and generate less vibrations. If you are ever going to by these wheels, and they are a lot of fun, I advice you to take the black ones. They have the best grip. Anyway, I will have to tune the IMU as well.

Tuning PID controllers is difficult and very, very time consuming. There is some theory around tuning PID controllers but in the end it is mostly trial and error. Everytime I want to try a new set of parameters I’ll have to modify the program, download it to the brick, run the program and evaluate the results by watching the robot. It is hard to understand what goes wrong when you see the robot ride of the disk and make a run for the door to the staircase.

But not anymore. Kirk, one of the developers of Lejos made a very nice program that allows you to tune a running PID controller during over bluetooth. The tool is still under development so you won’t find it in Lejos 0.9.1 yet. This program is an add-on to the charting logger I often use to evaluate internals of the robot on the PC. So basicly, this program shows me what is going on in my robot and allows me to modify PID parameters on the fly. I think this is a great tool. Below is a screen shot of it.


So, now I have the robot, a test platform and a efficient tuning tool. That must mean immediate succes! Well, to be honest I don´t think so. I´m still not sure if I can get this robot to work as there are problem with weight and inertia as well. The robot weigths 998 grams. This is quite heavy, even for three powerful NXT motors. The robot is quite stiff, but there it still bends a bit under weight. This affects the IMU sensor. And I´m working on other projects as well. So in the end I think there is a bigger chance to fail than to succeed.

To be continued.